Physics 09-02 Resistance and Resistivity

Another way to find resistance

······					
varies	with	and	with		
(or cross-sectional) a wi	ire			
Short, thick wire \rightarrow	resistance				
Long, skinny wire \rightarrow	resistance	!			
	$R = \frac{\rho L}{A}$				
ο <i>ρ</i> =	_ (Unit: Ωm)				
• Table 20.1 lists resistivities of some materials					
◦ Metals $→$	resistivity (1	$\times 10^{-8} \Omega \mathrm{m}$)			
◦ Insulators $→$	resisitivi	ty (1 × 10 ¹⁵ Ω m)			
• Semi-conductors	→ re	sistivity			
	varies (or cross-sectional Short, thick wire → Long, skinny wire → $\circ \rho =$ Table 20.1 lists resistivitie $\circ $ Metals → $\circ $ Insulators → $\circ $ Semi-conductors	varies with) a with (or cross-sectional) a with Short, thick wire → resistance Long, skinny wire → resistance $R = \frac{\rho L}{A}$ $\circ \rho = (Unit: \Omega m)$ Table 20.1 lists resistivities of some materials \circ Metals → resistivity (1 \circ Insulators → resistivity (1 \circ Semi-conductors → resistivity	varieswithand (or cross-sectional) a wire Short, thick wire →resistance Long, skinny wire →resistance $R = \frac{\rho L}{A}$ $\circ \rho = \(Unit: \Omega m)$ Table 20.1 lists resistivities of some materials $\circ Metals \rightarrow \resistivity (1 × 10^{-8} \Omega m)$ $\circ Insulators \rightarrow \resistivity (1 × 10^{15} \Omega m)$ $\circ Semi-conductors \rightarrow \resistivity$		

Why are long wires thick?

Wire thicknesses are measured in gauges. 20-gauge wire is thinner than 16-gauge wire. If 20-gauge wire has $A = 5.2 \times 10^{-7} m^2$ and 16-gauge wire has $A = 13 \times 10^{-7} m^2$, find the resistance per meter of each if they are copper.

Table 20.2 Tempature Coeffici	ients of Resistivity $lpha$	Silicon (pure)	23
Material	Coefficient α (1/°C) ^[2]	Silicon	0.
Conductors		Insulators	
Silver	3.8×10^{-3}	Amber	5>
Copper	3.9×10 ⁻³	Glass	10
Gold	3.4×10 ⁻³	Lucite	>1
Aluminum	3.9×10 ⁻³	Mica	10
Tungsten	4.5×10 ⁻³	Quartz (fused)	75
Iron	5.0×10 ⁻³	Rubber (hard)	10
Platinum	3.93×10 ⁻³	Sulfur	10
Lead	3.9×10 ⁻³	Teflon	>1
Manganin (Cu, Mn, Ni alloy)	0.000×10^{-3}	Wood	10
Constantan (Cu, Ni alloy)	0.002×10^{-3}		
Mercury	0.89×10^{-3}		
Nichrome (Ni, Fe, Cr alloy)	0.4×10^{-3}		
Semiconductors			
Carbon (pure)	-0.5×10^{-3}		
Germanium (pure)	-50×10^{-3}		
Silicon (pure)	-70×10^{-3}		

Resistivity and Temperature

 $\rho = \rho_0 (1 + \alpha \Delta T)$

- ρ = resistivity at temperature *T*
- ρ_0 = resistivity at temperature T_0
- *α* = temperature coefficient of resistivity (Unit: 1/°C (or 1/K))

Metals

• Resistivity ______ with temperature

• α is _____

- Semiconductors
 - Resistivity ______ with temperature
 - α is _____

Resistance and Temperature

 $R = R_0(1 + \alpha \Delta T)$

- *R* = resistance at temperature T
- *R*₀ = resistance at temperature T₀
- α = temperature coefficient of resistivity (Unit: 1/°C (or 1/K))

A heating element is a wire with cross-sectional area of 2×10^{-7} m² and is 1.3 m long. The material has resistivity of $4 \times 10^{-5} \Omega m$ at 200°C and a temperature coefficient of $3 \times 10^{-2} 1/°$ C. Find the resistance of the element at 350°C.

Name:

Material	Resistivity ρ (Ω · m
Conductors	
Silver	1.59×10 ⁻⁸
Copper	1.72×10^{-8}
Gold	2.44×10 ⁻⁸
Aluminum	2.65×10 ⁻⁸
Tungsten	5.6×10 ⁻⁸
Iron	9.71×10 ⁻⁸
Platinum	10.6×10 ⁻⁸
Steel	20×10 ⁻⁸
Lead	22×10 ⁻⁸
Manganin (Cu, Mn, Ni alloy)	44×10 ⁻⁸
Constantan (Cu, Ni alloy)	49×10 ⁻⁸
Mercury	96×10 ⁻⁸
Nichrome (Ni, Fe, Cr alloy)	100×10 ⁻⁸
Semiconductors ^[1]	
Carbon (pure)	3.5×10 ⁵
Carbon	$(3.5-60) \times 10^5$
Germanium (pure)	600×10 ⁻³
Germanium	$(1-600) \times 10^{-3}$
Silicon (pure)	2300
Silicon	0.1-2300
Insulators	
Amber	5×10 ¹⁴
Glass	$10^9 - 10^{14}$
Lucite	>10 ¹³
Mica	$10^{11} - 10^{15}$
Quartz (fused)	75×10 ¹⁶
Rubber (hard)	$10^{13} - 10^{16}$
Sulfur	1015
Teflon	>10 ¹³
Weed	108 1011

Physics 09-02 Resistance and Resistivity	Name:	
Superconductors		
Materials whose =		
become superconductors at	temperatures	
 Some materials using 	work at much temperatures	
No current		
• Used in		
 Transmission of, 	,, Powerful, small electric motors, Faster	
chips		

Homework

- 1. In which of the three semiconducting materials listed in Table 20.1 do impurities supply free charges? (Hint: Examine the range of resistivity for each and determine whether the pure semiconductor has the higher or lower conductivity.)
- 2. Does the resistance of an object depend on the path current takes through it? Consider, for example, a rectangular bar–is its resistance the same along its length as across its width? (See Figure.)
- 3. If aluminum and copper wires of the same length have the same resistance, which has the larger diameter? Why?
- 4. What is the resistance of a 20.0-m-long piece of 12-gauge copper wire having a 2.053-mm diameter? (OpenStax 20.24) 0.104 Ω
- 5. The diameter of 0-gauge copper wire is 8.252 mm. Find the resistance of a 1.00-km length of such wire used for power transmission. (OpenStax 20.25) **0.322** Ω
- 6. If the 0.100-mm diameter tungsten filament in a light bulb is to have a resistance of 0.200 Ω at 20.0 °C, how long should it be? (OpenStax 20.26) **2.81** × 10⁻² m
- 7. What current flows through a 2.54-cm-diameter rod of pure silicon that is 20.0 cm long, when 1.00×10^3 V is applied to it? (Such a rod may be used to make nuclear particle detectors, for example.) (OpenStax 20.28) **1**. **10** × **10**⁻³ **A**
- 8. (a) To what temperature must you raise a copper wire, originally at 20.0 °C, to double its resistance, neglecting any changes in dimensions? (b) Does this happen in household wiring under ordinary circumstances? (OpenStax 20.29) 276 °C
- 9. A resistor made of Nichrome wire is used in an application where its resistance cannot change more than 1.00% from its value at 20.0 °C . Over what temperature range can it be used? (OpenStax 20.30) –5°C to 45 °C
- 10. Of what material is a resistor made if its resistance is 40.0% greater at 100 °C than at 20.0 °C? (OpenStax 20.31)
 5.00 × 10⁻³ /°C
- (a) Of what material is a wire made, if it is 25.0 m long with a 0.100 mm diameter and has a resistance of 77.7 Ω at 20.0 °C?
 (b) What is its resistance at 150 °C? (OpenStax 20.33) 1.1 × 10² Ω
- 12. (a) Digital medical thermometers determine temperature by measuring the resistance of a semiconductor device called a thermistor (which has $\alpha = -0.0600 / ^{\circ}C$) when it is at the same temperature as the patient. What is a patient's temperature if the thermistor's resistance at that temperature is 82.0% of its value at 37.0 °C (normal body temperature)? (OpenStax 20.37a) **40.0** °C